2 research outputs found

    A time dependent performance model for multihop wireless networks with CBR traffic

    Get PDF
    In this paper, we develop a performance modeling technique for analyzing the time varying network layer queueing behavior of multihop wireless networks with constant bit rate traffic. Our approach is a hybrid of fluid flow queueing modeling and a time varying connectivity matrix. Network queues are modeled using fluid-flow based differential equation models which are solved using numerical methods, while node mobility is modeled using deterministic or stochastic modeling of adjacency matrix elements. Numerical and simulation experiments show that the new approach can provide reasonably accurate results with significant improvements in the computation time compared to standard simulation tools. © 2010 IEEE

    Time-varying performance analysis of multihop wireless networks with CBR traffic

    Get PDF
    In this paper, we develop a performance modeling technique for analyzing the time-varying network layer queuing behavior of multihop wireless networks with constant bit rate (CBR) traffic. Our approach is a hybrid of a time-varying adjacency matrix and a fluid flow queuing network model. The mobile network topology is modeled using a time-varying adjacency matrix, whereas node queues are modeled using fluid-flow-based differential equations that are solved using numerical methods. Numerical and simulation experiments show that this new approach can provide reasonably accurate results. Moreover, when compared with the computation time required in a standard discrete event simulator, the fluid-flow-based model is shown to be a more scalable tool. Finally, an illustrative example of our modeling technique application is given to show its capability of capturing the time-varying network performance as a function of traffic load, node mobility, and wireless link quality
    corecore